ARCANGEL

UNIVERSIDAD VALLE DEL GRIJALVA

JORGE ANTONIO LÓPEZ TOVILLA                I.S.C.           5o. "U"

MOTORES ELECTRICOS

MOTORES DE C. A.

MOTORES DE C. C.

MOTORES P. A P.

MENU

 

MOTORES

Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dinamo, y a una máquina que convierte la energía eléctrica en mecánica se le denomina motor.

Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se establece o se induce una corriente eléctrica en el primer conductor. El principio opuesto a éste fue observado en 1820 por el físico francés André Marie Ampère. Si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica sobre el conductor.

La máquina dinamoeléctrica más sencilla es la dinamo de disco desarrollada por Faraday, que consiste en un disco de cobre que se monta de tal forma que la parte del disco que se encuentra entre el centro y el borde quede situada entre los polos de un imán de herradura. Cuando el disco gira, se induce una corriente entre el centro del disco y su borde debido a la acción del campo del imán. El disco puede fabricarse para funcionar como un motor mediante la aplicación de un voltaje entre el borde y el centro del disco, lo que hace que el disco gire gracias a la fuerza producida por el campo magnético.

El campo magnético de un imán permanente sólo tiene fuerza suficiente como para hacer funcionar una dinamo pequeña o motor. Por ello, los electroimanes se emplean en máquinas grandes. Tanto los motores como los generadores tienen dos unidades básicas: el inductor, que crea el campo magnético y que suele ser un electroimán, y la armadura o inducido, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan los cables conductores.

 

LOS MOTORES ELECTRICOS

ARRIBA

Adoptar la electricidad en los automóviles con el fin de utilizar un sistema de propulsión que apenas contamine la ciudad, es posible en la actualidad, según el autor. En el siguiente fragmento de este artículo, Sperling enumera algunas de las ventajas y beneficios que ofrecen este tipo de vehículos.

Fragmento de La cuestión de los coches eléctricos.

Los vehículos cuyas ruedas son accionadas por motores eléctricos y no por la transmisión mecánica de un motor de gasolina podrán reducir notablemente la contaminación urbana y el efecto de invernadero en los próximos diez años. Y sentar las bases para un futuro sistema de transporte que apenas contamine. Es cierto que los automóviles de propulsión eléctrica son tan antiguos como los de motor de combustión. Pero es ahora cuando una serie de desarrollos técnicos nacidos al amparo de la revolución informática y de la reaganiana iniciativa de defensa estratégica (la llamada "guerra de las galaxias") en los años ochenta prometen conseguir que este medio de propulsión sea suficientemente eficaz y económico como para competir con la gasolina. Superar las bien consolidadas ventajas de los coches de gasolina exigirá, no obstante, un esfuerzo concertado de la industria y de los gobiernos para asegurar que el consumidor perciba los beneficios ambientales que ofrecen los coches eléctricos y se sienta estimulado para su compra.

La mejora de rendimientos.

En los vehículos de propulsión eléctrica se incluyen no sólo los que se alimentan de baterías cargadas por la red eléctrica, sino también los que generan su propia electricidad o la almacenan en dispositivos distintos de las baterías. Su denominador común es un eficaz motor eléctrico que acciona las ruedas y extrae energía del movimiento del coche cuando la velocidad de éste disminuye. Por contra, los vehículos de motor de explosión utilizan un motor que funciona constantemente, cuya potencia se aprovecha a través de embragues y engranajes para mover las ruedas y excitar un generador que suministra energía eléctrica a los diversos accesorios del coche. 

Por varias razones los vehículos eléctricos tienen mejor rendimiento y por tanto contaminan menos que los de combustibles. Primero, porque el motor eléctrico gobierna directamente las ruedas y no consume energía cuando el coche está parado o se desplaza por inercia, con lo que su rendimiento eficaz aumenta en un quinto aproximadamente. Los sistemas de frenado regenerativo, que tornan en generador el motor cuando el coche aminora la marcha pueden entregar hasta la mitad de la energía cinética del vehículo a células acumuladoras, lo cual es muy ventajoso en las arrancadas y paradas del tráfico urbano.

Además, el motor eléctrico convierte en fuerza motriz más del 90% de la energía de sus células acumuladoras, mientras que las transmisiones de los motores de explosión aprovechan menos del 25% de la energía aportada por la gasolina. Aunque dichas células suelen cargarse por generadores eléctricos cuyo rendimiento medio sólo llega al 33%, la propulsión eléctrica todavía aventaja en un 5% neto a la mecánica. Ciertas innovaciones como la generación con reciclaje (que extrae energía suplementaria del calor de los gases de escape de una planta de energía corriente) pronto permitirán elevar hasta un 50% el rendimiento de las centrales eléctricas que recargan las células acumuladoras. Este gran incremento aumentará proporcionalmente la parte de energía que, en última instancia, se entrega a las ruedas del vehículo eléctrico. Aún más eficaces son las células de combustible, que "queman" hidrógeno para generar electricidad directamente a bordo del automóvil.

La propulsión eléctrica aporta otras ventajas en cuanto a calidad del aire, puesto que desplaza los focos desde los que se dispersan los contaminantes. Los coches tradicionales despiden por el tubo de escape monóxido de carbono y otros agentes nocivos a lo largo de todo su recorrido. En cambio, la contaminación derivada de la generación de energía eléctrica suele concentrarse en unas pocas plantas alejadas de los núcleos urbanos.

Un coche eléctrico alimentado por baterías apenas sí desprende monóxido de carbono ni hidrocarburos volátiles sin quemar, y sus emisiones de óxidos de nitrógeno se ven drásticamente reducidas. En regiones atendidas por centrales térmicas de carbón, podrían provocar un aumento marginal de las emisiones de óxidos de azufre y de partículas sólidas. No obstante, la contaminación creada por la fabricación moderna de baterías y motores eléctricos es despreciable.

Los vehículos híbridos en los que se combinan pequeños motores de combustión con motores y dispositivos de almacenamiento eléctricos recortan las emisiones casi tanto como los puramente eléctricos alimentados por baterías. Estos vehículos híbridos pueden llegar a ser preferibles en regiones donde la energía eléctrica se genera en plantas de carbón. Por supuesto, el impacto de los coches eléctricos sobre la limpieza del aire será máximo cuando la energía eléctrica se obtenga de fuentes no contaminantes: solares, eólicas, hidroeléctricas o nucleares. Entre los primeros beneficiarios figurarían lugares en donde, como California, casi toda la electricidad proceda de plantas de gas natural muy controladas y de centrales hidroeléctricas y nucleares que no emiten contaminantes. Pero también otros que, como Francia, tengan en las centrales nucleares su principal fuente de energía eléctrica.

Estos beneficios ambientales podrían revestir gran importancia

 

MOTORES DE CORRIENTE ALTERNA

ARRIBA

Se diseñan dos tipos básicos de motores para funcionar con corriente alterna polifásica: los motores síncronos y los motores de inducción. El motor síncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna.

La velocidad constante de un motor síncrono es ventajosa en ciertos aparatos. Sin embargo, no puede utilizarse este tipo de motores en aplicaciones en las que la carga mecánica sobre el motor llega a ser muy grande, ya que si el motor reduce su velocidad cuando está bajo carga puede quedar fuera de fase con la frecuencia de la corriente y llegar a pararse. Los motores síncronos pueden funcionar con una fuente de potencia monofásica mediante la inclusión de los elementos de circuito adecuados para conseguir un campo magnético rotatorio.

El más simple de todos los tipos de motores eléctricos es el motor de inducción de caja de ardilla que se usa con alimentación trifásica. La armadura de este tipo de motor consiste en tres bobinas fijas y es similar a la del motor síncrono. El elemento rotatorio consiste en un núcleo, en el que se incluye una serie de conductores de gran capacidad colocados en círculo alrededor del árbol y paralelos a él. Cuando no tienen núcleo, los conductores del rotor se parecen en su forma a las jaulas cilíndricas que se usaban para las ardillas. El flujo de la corriente trifásica dentro de las bobinas de la armadura fija genera un campo magnético rotatorio, y éste induce una corriente en los conductores de la jaula. La reacción magnética entre el campo rotatorio y los conductores del rotor que transportan la corriente hace que éste gire. Si el rotor da vueltas exactamente a la misma velocidad que el campo magnético, no habrá en él corrientes inducidas, y, por tanto, el rotor no debería girar a una velocidad síncrona. En funcionamiento, la velocidad de rotación del rotor y la del campo difieren entre sí de un 2 a un 5%. Esta diferencia de velocidad se conoce como caída.

Los motores con rotores del tipo jaula de ardilla se pueden usar con corriente alterna monofásica utilizando varios dispositivos de inductancia y capacitancia, que alteren las características del voltaje monofásico y lo hagan parecido al bifásico. Estos motores se denominan motores multifásicos o motores de condensador (o de capacidad), según los dispositivos que usen. Los motores de jaula de ardilla monofásicos no tienen un par de arranque grande, y se utilizan motores de repulsión-inducción para las aplicaciones en las que se requiere el par. Este tipo de motores pueden ser multifásicos o de condensador, pero disponen de un interruptor manual o automático que permite que fluya la corriente entre las escobillas del conmutador cuando se arranca el motor, y los circuitos cortos de todos los segmentos del conmutador, después de que el motor alcance una velocidad crítica. Los motores de repulsión-inducción se denominan así debido a que su par de arranque depende de la repulsión entre el rotor y el estátor, y su par, mientras está en funcionamiento, depende de la inducción. Los motores de baterías en serie con conmutadores, que funcionan tanto con corriente continua como con corriente alterna, se denominan motores universales. Éstos se fabrican en tamaños pequeños y se utilizan en aparatos domésticos.

 

MOTORES DE CORRIENTE CONTINUA

ARRIBA

En general, los motores de corriente continua son similares en su construcción a los generadores. De hecho podrían describirse como generadores que funcionan al revés. Cuando la corriente pasa a través de la armadura de un motor de corriente continua, se genera un par de fuerzas debido a la acción del campo magnético, y la armadura gira. La función del conmutador y la de las conexiones de las bobinas del campo de los motores es exactamente la misma que en los generadores. La revolución de la armadura induce un voltaje en las bobinas de ésta. Este voltaje es opuesto al voltaje exterior que se aplica a la armadura, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz. Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover la armadura. Bajo carga, la armadura gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en la armadura.


Debido a que la velocidad de rotación controla el flujo de la corriente en la armadura, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando la armadura está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas de la armadura. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a la armadura, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.

 motor depende de la intensidad del campo magnético que actúa sobre la armadura, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.

 

Control de Motores Paso a Paso

ARRIBA

 De todos es conocido, que uno de los más importantes motores utilizados en robótica son los motores de tipo paso-paso.

La ventaja de estos motores consiste en que de forma muy sencilla podemos controlar la posición en cada momento del eje del motor, con lo que nos permite dar solución a sistemas en los que se requiera un alto grado de precisión en los movimientos a realizar.

Aunque la precisión final de este tipo de motores, depende de las características del mismo, a continuación ofrecemos un pequeño diseño para poder controlar un motor paso-paso de forma sencilla.

Para la realización del mismo se ha contado con un motor paso-paso de la Casa PHILIPS modelo PAP 9904 112 35314 y de un integrado especial para su control el SAA1027, ambos componentes se pueden encontrar en el mercado fácilmente.

motores paso a paso


Descripción de las patillas de control:

PATILLA T:

A esta patilla se le introducen pulsos generados externamente, como consecuencia de estos pulsos el motor comenzará a girar, hay que tener en cuenta que la frecuencia de los pulsos nos determinará la velocidad del motor, y que el número de pulsos entrados es igual al número de pasos o posiciones que avanzará el motor.

 

PATILLA R:

La misión de esta patilla es controlar el sentido del giro del motor paso-paso así obtendremos que:

para R= "1 lógico" , el motor gira en sentido antihorario.

para R= "0 lógico", el motor gira en sentido horario.

 

PATILLA S:

Esta patilla nos permite habilitar el integrado, esto quiere decir que si introduciomos un 1 lógico por S el integrado responderá a las patillas de entrada, mientras que si mantenemos un 0 lógico es S el integrado no responderá a ninguna señal de control.

Como comentario, me gustara destacar que si en el mercado no podemos encontrar el modelo de motor paso-paso indicado en el esquema, no se preocupe, puede utilizar cualquier motor pero respetando las siguientes condiciones:

- Que su tensión de alimentación sea de 12V

- Que sea un motor de 4 bobinas.

Por último incluyo en el informe las caractersticas técnicas del motor PAP 9904 112 32001;

- Consumo: 2 W

- Ángulo de paso: 7º 30´

- Tolerancia por paso: +- 40´

- Pasos por revolución: 48

ARRIBA

 

UNIVERSIDAD VALLE DEL GRIJALVA

JORGE ANTONIO LÓPEZ TOVILLA                I.S.C.           5o. "U"

MENU